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Summary. A mathematical model of the logical structure of chemistry is sug- 
gested. The model is based on the phenomenon of convertibility between 
chemical species which is expressed by the so-called convertibility function F. In 
the center of the model there is the potential energy (hyper)surface, PES. A 
heuristic modification of the general convertibility function is presented. Several 
algorithms have been developed for an analysis of PES which is described by 
paths, and for heuristic obtaining of PES paths. The notion of K-barrier of 
conformational PES is introduced as well as an algorithm for its computation. 

Key words: Mathematical mode l -  Logical structure of chemistry- Potential 
energy hypersurface - Graph theory 

1. Introduction 

The power of computers is increased by the quality of mathematical models on 
which the computer programs are based. One could say that we are very close to 
the time when a very general and largely applicable chemical program system will 
be created. Large software packages like CHEMLAB, CHEM-X, MacroModel 
[ 1], which are very powerful for experimental chemists, can serve as first examples. 

There are several standpoints for the classification of models. Some of them 
are discussed in the next section. For our purposes, it is reasonable to classify 
models as "physical" and "non-physical" (or heuristic). Physical models express 
exactly the physical basis of the process investigated. However, an experimental 
chemist working a long period of time in a certain field gains experience, and 
creates his special "internal" model which is usually not exact, but which serves 
well. Such a model could be called heuristic or logical. The developing of 
computer science in such fields as expert systems and logical programming are 
also very important stimulating factors for the creation of heuristic models of 
chemical reality. 

However, the formulation of a mathematical model of logical structure of 
certain disciplines is very important for the formulation of the main problems of 
the discipline. The development of models of the logical structure of chemistry 
was pioneered by Dugundji and Ugi [2] and followed by further authors [3]. 
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This paper is trying to generalize approaches currently used in this field. 
Potential energy (hyper)surface, PES, an adequate tool for modelling of inter- 
conversions between chemical species serves as a basis for the model formula- 
tion. The PES modelling consists of two fundamental steps in our approach. The 
first one expects exact knowledge of PES, and describes it using a graph 
theoretical model, a graph of PES. The second step starts with an initial set of 
minima along PES, and creates a similar graph theoretical model as in the first 
step. But, in this case, the graph of PES is created by a heuristic mechanism. 

In the center of our approach there is the so-called general convertibility 
function F. The exact definition of F is based on PES. Since the approach 
presented offers to solve also the opposite task, i.e., a heuristic method of 
obtaining PES, a heuristic convertibility function and a special algorithm, 
DAISY, have been developed. However, PES is a mathematical structure which 
has to be chemically interpreted. Some algorithms utilizable for such an interpre- 
tation are described. 

2. A static and dynamical part of the model and model classification 

From the general point of view, it is difficult to classify models into static and 
dynamical because they are modelling molecules which are being continuously 
changed. We will use this classification in order to keep a clearer view. A static 
description is based on a "fixed" nuclear configuration and can be used for 
inductive or deductive prediction of features of chemical systems with this 
"fixed" nuclear geometry, i.e., for example, prediction of energy and optical 
properties. A dynamical model or dynamical part of a model serves the descrip- 
tion of changes of nuclear configurations, i.e., the modelling of conformational, 
configurational, and reaction resolutions. This part of the model can then be 
used for the prediction of reaction rates, conditions, yields, etc. 

Models of the two above categories are described in the literature. The 
Schr6dinger wave equation is one of the most essential models. In order to make 
this model more practically usable, some other models have been created. The 
Born-Oppenheimer approximation [4] can serve as an example. The 
Schr6dinger equation is an exact physical model. For the discussion of physical 
quantum chemical models see Ref. [5]. These models could be called "micro- 
scopic". More close to a "macroscopic" standpoint are heuristic (or logical) 
models. The Dugundji-Ugi model [2] is the first general model of this category. 
This model has been further developed and modified [6-10]. Heuristic models do 
not explicitly describe the physical basis of the chemical system investigated, that 
is, more or less, included implicitly. However, some models are not exactly 
physical or heuristic. The common feature for all models "of  chemistry" is the 
fact that they model chemical isomerization. Most of them have been reviewed 
in Slanina's book about isomerism [11]. 

The dimension is another classification key. One-, two-, or three-dimensional 
models are the most frequent. QSAR studies based only on log P values can 
serve as an example of one-dimensional model. Two parameters as well as 
topological models can be classified as two-dimensional. Topological models 
express atoms and their neighborhood without spatial orientation which is, more 
or less, included implicitly. This class of models can serve the static as well as the 
dynamical description of a chemical system. A topological model can be visual- 
ized by a graph theoretical model and, therefore, graph theoretical models are 
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very often called topological. Note that using a topological or a graph theoretical 
model, a multidimensional structure can be modelled. Such models of PES can 
serve as examples [12, 13]. Three-dimensional models study a chemical system as 
a three-dimensional body. Stereochemistry is an example of utilizing such 
models, and group theory an example of a suitable mathematical tool for them. 
As mentioned above, PES is a typical example of a multidimensional model. Of 
course, PES cannot be, in most cases, fully visualized. Fortunately, basic 
information can be "extracted" from PES, and represented by models of lower 
dimension. 

3. Potential energy hypersurface - a bridge between physical 
and heuristic models of  chemical reality 

PES obtaining is one of the most serious goals of theoretical and computa- 
tional chemistry. At the same time, although PES are multidimensional bodies, 
they can be efficiently interpreted by experimental chemists. Therefore, follow- 
ing Mezey [12a], one can say that PES is one of the basic bridges between 
theoretical and experimental chemistry. PES itself is a model which may be 
subjected to further modelling. We define a graph theoretical model of PES. 
Graph theory has been used for modelling PES recently, cf. for example Refs. 
[13, 14]. The first part of our model, presented in Sect. 3, is based on Mezey's 
theory of catchment regions and network relations along PES [12b,c]. We 
assume that PES is an energy function E(r) where r is a fixed nuclear configura- 
tion of the investigated chemical structure. Let us suppose that E(r) is twice 
differentiable. 

3.1. A graph theoretical model of PES(A) - the graph GeES(A) 

Let the (hyper)surface be constructed over the fixed set A of atoms, card 
A = N. We will use two equivalent symbols, PES and PES(A). The latter will 
usually be used in the case when a connection to set A appears. Let us assume 
that such a part of PES is studied which does not contain degenerate critical 
points [12a]. We will distinguish two principally different paths [12a]. 

(i) The path of a nuclear geometry change which is the path in 3 N -  6 
dimensional nuclear configuration space R 3N-6. 

(ii) The corresponding relief path along PES, i.e. in R 3N-5 dimensional space. 

Path (i) will inform us about the progress of nuclear configuration change, 
and from path (ii) we get some information about energy changes. 

In our model, PES will be represented by critical points, i.e., stationary 
points with zero gradient (all the first derivatives are zeros). We say [12a] that a 
critical point r is a critical point of index k if the Hessian matrix of the second 
derivatives has k negative eigenvalues. Specially, critical points of index zero and 
one are minima (chemical species) and transition states, respectively. In order to 
keep consistency of the model for pathological and from reality-distant cases, we 
will consider points with infinite coordinates as critical points. Their classification 
is based on limiting values of curvature. Let k V denote a set of critical points of 
PES(A) of indices 0, 1 . . . . .  k. Let k V =  {vi}, i = 1 . . . . .  n. Let Vt be the set of all 
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critical points of index t. We may write: 
k 

kV= U Vt" (1) 
t=0 

Let us define set Ev for each v ~ V,, t = 1, 2, 3 , . . . ,  k, such that Ev is the set 
of all couples {v, v'} such that some steepest descent path along PES(A) starting 

t V t in v vanishes in v, ~ Vt_l. Now, let each couple {v,v'} be ordered in an 
arbitrary but fixed way. So, we get Ev = {(v, v') or (v', v)}. Let us define the set 
kE as: 

k 
kE = U E,. (2) 

t=l 

The graph kGpEs~A) is defined as an ordered set: 

kGpEs(A) = (kV, kE, c~, {Y, R}) (3) 

where the set of  vertices kv  and edges hE is defined by Eqs. (1) and (2), 
respectively, q5 is mapping hE ~ {Y, R} defined as: 

{R Y if E(v)<~E(v'), 
~b(v, v') = if E(v) > E(v'). 

The graph kGpEs(A) is a graph with oriented edges colored yellow (Y) or red (R). 
The edge (v, v') is oriented by v ---, v'. It is clear from the above construction that 
kGpEs(A) C k+ IGpEs(A). The construction of gGpEs(A) is visualized in Fig. 1. 

Sets V and E from Eqs. (1) and (2) are as follows: °V = {vl, v'l, v;, v('}, 
' V = ° V u { v 2 ,  v~,v~,v~'},  2 V = ' V u { o 3 ,  v ; ,v~ ,v~ '} ,  ° E = ~ ,  1 E =  {(v;, v]'), 
(v~', v;) ,  (v'~, v~), (vl, v~), (vl, v2), (v~, v~), (v'~, v;'), (Vl, v~'), (v~", v~')}, ~E = 
1Eu{(v'3, v~'), (v2, v;), (v~,v'~), (v~,v~), (v3, v2), (v~, v;), (Va, V[)}. Note that 
edge orientation in graphs ~GpEs(A) and 2GpEs(A ) is arbitrary. The reason will be 
seen in Sect. 4. 

However, mainly the graphs 0GeEs(A ) and 1GpEs(A) will be of  our interest. The 
graph 0GpEs(A> contains isolated vertices, minima representing chemical species. 
Interconversions between minima can be seen from the graph 1GpEs(A ). 

It should be pointed out that the graph ~GpEs(A) is very similar to Mezey's 
reaction network digraph D [12b]. However, they differ in some points. The 
essential difference is that only relations between critical points whose indices 
differ by unit are considered in kGpEs(A). From this point of view, kGpEs(A) could 
be understood as a subgraph of D. The same difference appears comparing the 
lower introduced general convertibility function to the relative and absolute 
E-reachability concept [12b]. 

3.2. The general convertibility function 

Following the general idea of the intrinsic reaction coordinate of Fukui [15] we 
say that a chemical species E is convertible to another chemical species P if there 
exists a saddle point I along PES(A), and two steepest descent paths joining ! 
such that the first of these vanishes in E and the second one in P. The 
interconversion path E ~ P is the composition of the first and second path, and 
point I plays the role of the transition state. We will generalize the above idea 
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Fig. I. a Part of model surface with critical points/)i, V~, /)~t, /)~tp of index i - 1, and steepest descent 
paths shown by heavy arcs. b Graph 0GpEs(A) of the above surface, e Graph 1GpEs(,~ ) of the surface. 
d Graph 2Gpzs~) of the surface 

also for  cri t ical  po in ts  o f  h igher  indices, and  define the general  conver t ib i l i ty  
funct ion  F for  a rb i t r a ry  v, v' e kGp~s~A ) as follows: 

{12 i f t h e r e e x i s t q a n d x s u c h t h a t v ' v ' e V ~ ' x ~ V " + " k  k , k ~ ~, 
F(v ,v ' )= ( v , x )~  E o r  (x ,v )  e E a n d  ( v , x )  e E o r ( x , v ) e k E ,  (4) 

otherwise.  

The  values o f  F for  the e lements  o f  V o are  o f  special  interest  because they in form 
a b o u t  the conver t ib i l i ty  between chemical  species. 
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Fig. 2. The convertibility 
1 c graphs GpEs(,~) (a) and 

2 c Gpzs(A ) (b) of the model 
b v~, surface from the Fig. 1 (the 

point v~' is not considered) 

3.3. The convertibility graph of PES(A) 

The convertibility along PES can be visualized by the convertibility graph 
k c GpES(A) defined as follows: 

k c k Ec) GvEs(A) = ( ~ -  1 V, (5) 

where k - i V  is the vertex set of the graph k-IGpEs(A) (cf. Eq. (3)), kEC= 
{{v, V') I v, V' ~ k-1V and F(v, v') = 1), and the function F is defined by Eq. (4). 

The edges of k Gv~s(A) model the individual interconversions between the 
nuclear configurations which are symbolized by vertices of graph k-~G~'ES(A). 
The convertibility graphs ~G~,Es(A) and 2G~,ES(A ) of the part of the model surface 
from Fig. 1 are shown in Fig. 2. The edge sets E ~ from Eq. (5) are as follows: 

= {{v, ,  v'l), (v',, 2EC = lEC  {{v2, {v2, 
Note that ~-~ c k c ~ P E S ( A )  CZ GpEs(,4 ). 

3.3.1. Energy K-barriers of the graph of conformational PES 

Studying the reaction PES, we are usually interested in some domains of PES. 
There is a different situation if a conformational PES is of our interest. Here, we 
would like to know all low-energy minima conformations. The heights of the 
energy barriers for the individual interconversions can be understood as a 
criterion of experimental evidence, and they are in a close relation to the 
conformational softness [16] and flexibility of a molecule. The so-called K- 
barrier is a quantitative expression of the flexibility of the molecule. 

Let us suppose that the graph kG~,ES(m of a conformational PES is connected, 
and each interconversion, i.e., the edge of the graph, is described by interconversion 
barrier which is expressed with respect to the absolute minimum along PES, i.e., 
with respect to the lowest energy conformation. We define the energy K-barrier 
as the lowest energy barrier over which the graph will be split into K components. 
In other words, if we remove all the edges with the energy value higher than 
K-barrier from the graph k G~;EStA), we get the graph with K components, Removing 
all edges with the highest energy value from the remaining subgraph will split the 
subgraph at least into K + 1 components. It is clear from the above definition 
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that the energy K-barrier is always greater than or equal to zero, and it is equal 
to zero only if kG~Es(A) is composed of isolate vertices, i.e., for K = card k- 1V. 
The following algorithm has been developed for the computation of the energy 
K-barriers. 

Algorithm 1 
O. Initialization: Let k c = (k- 1 GpES(A) V, gE c) be the convertibility graph of a 

conformational PES. Let this graph be connected. Let 0 :~EC-~R be a 
function which describes the conversion barriers for each conversion with 
respect to the lowest energy conformation. Let ~- 1 V ¢ ~Z~, kEC ¢ ~ .  

1. K..= 1. 
2. Let e e ~E C be such an edge for which the inequality ~O(e) ~> O(e') is satisfied 

for each e' E~'E c -  {e}. Put KB:=O(e); kEC,=~EC- {e}. 
k c 3. If  GpES(A) has K components then go to step 2. 

4. Put energy K-barrier,=KB: K:=K + 1. 
5. If  ~EC¢ ~ go to step 2. 
6. The end of the algorithm. 

The algorithm is illustrated in Fig. 3. 
Algorithm 1 is implemented as a part of the computer program system 

DAISY [16] for the analysis of conformational PES's. 

4 

3 

13 - . 0  , 

1 

3 

Fig. 3. The application of the algorithm 1 to a graph with 5 conformations and energy barriers in 
kcal/mol. The third step, shown by heavy arrow, splits the graph into two components (conforma- 
tion 4 becomes isolated). It means that energy 1-barrier is 1.3 kcal]mol. Analogically, for 2, 3, and 
4-barrier we have 1.0, 0.9, and 0.8 kcal]mol, respectively 
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3.4. The extended graph of PES(A) 

The graph theoretical model presented above is based on the ideal knowledge of 
PES(A), i.e., all of its critical points. Let us also extend the model for other points. 
Consider the set k v' of points of  PES(A) such that k V ' =  k V, where k V is defined 
by Eq. (1). Let us define the set Ev for each/) ~ kV' - -kV as the set of  all couples 
{v,/)'}, where the steepest descent path starting in v vanishes in v' (v' ~ kV), or joins 
v' ~ kv '  -- kv. Let us orient each of the couples {v, v'} in an arbitrary but fixed 
way. So, we get Ev = {(v, v') or (/)',/)) }. Now, let us define the set kE' as follows: 

kE' = kE U U Ev (6) 
v~kV ' - -kv  

where kE is defined by Eq. (2). 
The extended graph kG~Es( m is defined as an ordered set: 

k t GpES(A) = (kV', kE', C~, {Y, R}) (7) 

where k V', kE' are sets defined above and ~b is mapping defined analogically to 
that in Eq. (3). 

The part of  model surface, and corresponding graphs gG'PES(A) are shown in 
the Fig. 4. The sets V' and E' from Eqs. (6) and (7) are as follows: 

°Wt : {Vl,/) '1, Vl t , /)1", v(1), v(2), D(4), v(5), v(6), D(7)}, 

~V'= °V'u  {v2, v~, v~, v~', v(3)}, 

W ' =  ~v' u{v~, v'~, v~, v~'}, 
°E' = {(v (2), v'l), (v ('), v,), (v (5), v ]"), (I) (7), 0(5)), (/)(6) /)(5)), (/)]", /)(4))}, 

1E' = ° E ' u  {(/)2, /)]'), (/)i'l , /)2), (/)'1 , /)~), (/)tl,/)2), (/)2,/)1), (/)~,/)it/), 

(v~, vT), (vT,/)7), (v~, v~))}, 
zg '=  IE'w {(v~, v~'), (/)2, v~), (v~, v~), (v~, v~), (Vz,/)2), 

(v~, v~), (v~, v~), (v~', vT)}. 

J ~ ~ /  v (4) 

Fig. 4. a 
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Fig. 4. a Part of model surface with 
critical points vi, v'i, v~', v~" of index 
i - 1, other points v (1) . . . .  , v (7), and 
steepest descent paths shoved by 
heavy arcs. b Graph 0G~,ES(A ) of the 
above surface, e Graph 1G~,ES(A) of 
the surface, d Graph 2G~,~s(,~) of the 
surface 

3.4.1. Catchment regions and the graph kG~,Es(A ) 

In  order  to  bet ter  u n d e r s t a n d  re lat ions  b e t w e e n  c h e m i c a l  species ,  w e  use  the  
n o t i o n  o f  a c a t c h m e n t  reg ion.  T h e  n o t i o n  has  been,  in c o n n e c t i o n  to  PES,  
init ial ly  i n t r o d u c e d  by  M e z e y  [ 12, 17]. F o l l o w i n g  h i m  w e  say  that  a genera l  p o i n t  
v o f  PES ,  w h i c h  is n o t  a crit ical  po in t ,  is in the c a t c h m e n t  reg ion  o f  a crit ical  
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point v' of PES(A) if the steepest descent path joining v vanishes in v'. Chemical 
species v' can be understood as a set of all nuclear configurations which are in 
the catchment region of v'. 

3.4.2. A classification of the vertices of the graph kG~,ES(.4). 
An algorithm for the classification of points on PES 

This section is directed to an analysis of PES which is described by paths. It 
presents some analogies with Mezey's approach [12c] which is oriented to a 
topological study of boundary properties of catchment regions. 

It has been assumed in the above paragraphs that full information about 
critical points of PES is available. Let us turn our attention to such a case, 
where the PES is described by certain points and paths between them. This 
situation is probable when an analytical description of PES is not accessible. In 
an ideal case, we have a reliable estimation of the graph kG~Es<a) which 
contains a good approximation of all critical points. Since exact information 
about the index of a critical point cannot be obtained without exact knowledge 
of this critical point, we may assume that almost no information about critical 
points is available. We introduce the following algorithm 2 for the classification 
of points along PES which starts with the graph kG~,ES~A ) (or better to say, with 
its reliable estimation), and is based on the set construction. Note that under 
the term "critical point" is, in this passage, understood rather an approxima- 
tion of the critical point than formulation of its geometry exactly. The same 
should be said about paths. The following operations are required from the 
algorithm: 

1. Separation of critical and remaining points of PES. 

2. Separation of non-critical points into catchments regions of the critical 
points. 

3. Finding the index of each critical point. 

Note that steps 3 and 4 of the algorithm below are implicitly included in step 5. 
They are introduced separately in order to keep a clearer view. 

Algorithm 2 
0. Initialization: Let the extended graph kG~EstA), defined by Eq. (7), be input 

structure. Let kV',={vl . . . . .  v,}, 1.'={1, 2 . . . . .  n}. 
1. Let us define the set Ki for each vi • kV' as follows: K~ = {v~} u {xo • kV' I there 

exists a series Xo, Xl . . . . .  Xm, Vi such, that E(xt) > E(v~) for t -- 0, 1 , . . . ,  m; 
E(xq)>E(xq+l) for q = 0 , 1  . . . .  , m - l ,  , and (xm, vi) e~E ' or 
(vi, Xm) • kE, (Xq, Xq+ 1) S kE' or (Xq+ I, Xq) • kE }. In other words, Ki is the 
set of all points of PES from which it is possible to find such a path joining 
vi which is composed of the steepest descent paths. 

2. Let us choose a new set system K~o from the sets K i, i • L in such a way 
that Kzo are not in inclusion. Formally: i0 e Io, where I o is the set of 
such indices iO, jO that i0 C j0  implies K~o ¢ Kyo for each i0. It is clear that 
Io~I .  

3. Let us construct the sets Cio and I ° such that 

J O e l  0 

I ° , =  {i I v, iO Io} 
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4. Let  us construct  the sets Cil and I 1 such that  

q,,--K,,- U ~-1, 
j l  El 1 
j l  ¢ il 

I '  := {i I/)i E Ci,, i l E I1 }, 

where I, ~ I - I ° such that  K~I ¢ Kjl for  each i l , j l  ~ I~. 
5. Let  us construct  the sets C~m and I m such that  

Cim,=Kim- U Kjm, 
j m  E I m  
j m  ~ i r a  

Im,={i  ]/)ieCim, im e l m } ,  

where Im ~ I -- ~'=-01 P such that  K;m ¢ Kj,~ for each im, jm  e Ira. 
6. The end of  the algorithm. 

It follows f rom step 5 o f  the above algori thm that  Iq c I q, for  q = 0, 1 . . . . .  
Since the set k I1' is finite, the set I has to be also finite. It implies that  there exists 
such an index m that  the set Im is empty. In the case of  the extended graph 
kG~,~s(A), one can write that  k < m < s + 1 where s is the dimension o f  PES(A). 
The results o f  algori thm 2 are summarized by the following theorem. 

Theorem 1 
Let us consider the denota t ion f rom algori thm 2. Then  

1. The point  V~q, iq e Iq, q = 1, 2 . . . . .  is a critical point  of  PES(A) o f  the index 
q. 

2. The point  /)~-t is f rom the catchment  region o f  the point  v~q for  each 
/)i, e Ciq - {V~q } and iq ~ Iq, q = 1, 2 , . . . .  

1 t Example 1. Let us consider the graph GpES(A) f rom Fig. 4 with the following 
t i t  t t t  ! . t t  . t i t  numbering o f  v e r t i c e s :  1 : / )1 ,2 : / )1 ,  3 : / ) 1 ,4 : / ) 1  , 5:/)2, 6 : v 2 ,  7 . / )2 ,  8 . / ) 2 , 9 : / ) ° ) ,  

10:v (2), l l : v  (3', 12:v (n', 13:v (5', 14:v (6', 15:v (7). The sets K, C, and I f rom al- 
gori thm 2 are constructed as follows: 

Step 0: I = {1, 2 . . . . .  15}. 

Step 1:/(1 = {vl, v2, v~', v ('', v (3'} = {1, 5, 8, 9, 11}, 

K 2 = {v], v2, vl ,  v~, v (2), v ° '} = {2, 5, 6, 7, 10, 11}, 

/(3 = {/)]', vl} = {3, 6}, 
K4 = {v;', v~, v~', v (4~, v (5),/)(6), v(7)} = {4, 7, 8, 12, 13, 14, 15}, 

/£5 = {v: ,  v (3'} = {5,  11},  

K 7 = {v~}  = {7} ,  

K 9 = {v (''} = {9} ,  

/(11 = {/)(3)} = {11} ,  

/(13 = {/)(5,} = {13} ,  

K15 = {/)~7~} = {15} .  

K6 = {v~}  = {6 ) ,  

K8 = {/)~'} = {8} ,  

K,o  -- {/)(2,} = {10} ,  

K12 = {/)(4)} = {12} ,  

K,4  = {u (6)} = {14} ,  

Step 2: For  instance, the following set inclusions can be found between the sets 
Ki: Ks c K, ,  K6 c K2, KT C K4, 1£8 ~ K, ,  K9 ~ K, ,  K i o s K 2 ,  KII = K2, K12 = K4, 
KI3 c K4, Kin c g4, K15 c / ( 4 .  So, we have: Io = {1, 2, 3, 4}. 
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Step 3: The sets Cio and the set I ° are as follows: 

c ,  = = { ¢ , ,  

= { / ) i ' } .  

C4 = {/),1 t', D(4), /)(5), V(6), /)(7)}, 

I ° = {1, 2, 3, 4, 9, 10, 12, 13, 14, 15}. 

Step 4: The sets Cgl, 11 and P are constructed in the following manner. 

C5 : { / )2,  /)(3)},  C6 = { / )~ } ,  

C 7 : {/)~}, C 8 ~--- {I)~'}, 

I, = {5, 6, 7, 8,}, I '  = {5, 6, 7, 8, 11}. 

Step 5: The set/2 must be a subset of the set I -  U)=o P, which is empty set. It 
implies that /2  is empty and the algorithm has been terminated. The set Io and/1 
is the set of critical points of the index 0 and 1, respectively. The sets C~ . . . . .  C8 
contain points from the catchment regions of critical points 1 . . . . .  8. 

Proof  o f  Theorem I 
By induction with respect to q. Let us suppose that q = 0. 

al .  Let Io be defined by step 2 of algorithm 2, i0 ~ Io. It follows from step 1 
of the algorithm that rio is the minimal element (in the sense of the energy along 
steepest descent path) in the set Kio. It follows from step 2 that there is no path 
which is joining v,~, and which would reach another point of PES(A) with lower 
energy than v,~. However, if such a path exists then such a set Kj~ has to exist 
that K; o c K~0 which is in contradiction to step 2. It means that v,~ is a local 
minimum along PES(A), a critical point of zero index. 

a2. Let us consider a general point vi ~ (7,-0 - {rio}. This point cannot be a 
critical point of zero index because there exists a path composed of the steepest 
descent parts which connects this point to vi0. This point v~ cannot be a critical 
point of higher index either. Let us suppose that this point is a critical point of 
a higher index. It implies that two different paths composed of the steepest 
descent parts have to exist which connect v~ to two different points V~o, vj0. Step 
2 implies that vz s Clo and v~ s Cj~ which is in contradiction to the definition of 
the set C~0 in step 3. Accordingly, v i is not a critical point of PES(A). Since 
v~ E (7,.0 and, consequently, vi ~ K,~, there exists a path connecting vi and v~0, 
which is composed of the steepest descent parts. We will show that there does 
not exist another critical point on this path. Let us suppose that vj (vj ¢ vz) is a 
critical point on the path v~ ~ rio. The point vj cannot be of index zero because 
rio is of index zero. It implies that there exists a critical point Vjo (rio ¢ vj~) of 
index zero such that vj is connected to Vjo by a path composed of steepest descent 
parts. From this, we have vj ~ K~o A Vj ~ K~. Consequently, vj ~ C;o, which is the 
contradiction, and vj is an element of the catchment region of rio. 

Let us suppose that the assertion is valid for each q = 0, 1 . . . . .  t. We will 
show it f o r q = t + l .  

b l. Let iq ~ Iq. The point V~q cannot be in any catchment region of any 
critical point of index less than q because it would be in a set Cit (t < q). This is 
not possible because of the construction of the set Iq in step 5. Because of that, 
and since V~q is the minimal element in the set Kiq (and Ciq), it has to be a critical 
point of index q. 
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b2. Let vi E C~q - {V~q }. In the same way as in a2, we may show that v~ is an 
element of the catchment region of Vgq. 

In order to prove Theorem 1, we had to assume, in fact, that we have a very 
good approximation (or exact knowledge) of critical points. The meaning of the 
words "very good" here should be, however, subjected to further analysis. 

Now, we have got an algorithm which can be used for the classification of 
critical points of PES(A), and the separation of non-critical points into catch- 
ment regions of critical points. Based on the algorithm, we enlarge general 
convertibility function F for the extended graph kG~,ES(A ~. 

3.4.3. General convertibility function on the graph ~G~,ES(A ~ 

Let us suppose the denotation introduced in the above algorithm 2. We will 
define the function F for two arbitrary points of the set KV' as follows: 

f 
0 if there exists m such that vi, vj ~ Cim, 
1 if there exists m such that vi ~ Cgm, v s ~ Cjm, 

F(v, v') = i m , j m  ~ Ira, and there exists 1 e Im +1 such that (8) 
V 1 ~ K i m  , V l E K j m  , 

2 in the remaining cases. 

The sets C and I are defined by step 5 of algorithm 2. 
Note that the function F is an extension of the function from definition 4 for 

points from the same catchment region. 

4. A heuristic description and obtaining of PES 

In the above section, we have suggested the algorithm which makes it possible to 
analyze a PES which is defined by paths. Now, let us turn our attention to the 
problem of obtaining the paths. The proposed approach is heuristic. A part of 
that, oriented to conformational PES analysis, has been realized on computer 
[16]. The approach will be discussed within a graph-theoretical frame. 

01,'~tt 4. I. The starting set o f  nuclear configurations - the graph UVES(A) 

The starting point for obtaining PES paths is the formulation of the starting set 
A of atoms, and the starting set of nuclear configurations expected as chemical 
species. Following Eqs. (1, 3, 6), we will denote this set as °V". The graph 
O(~,t "VESTA), which is called the heuristic graph of PES(A), is defined as follows: 

0~, 0 E,,, • -, vzs(A) = ( °V', q~, {Y, R}) (9) 

Similarly to the graphs 0GpEs~A) and °G~,ES(A ), the set °E" is empty, ~b is 
defined analogically to that in Eqs. (3) and (7). The part of PES(A) being of 
interest is determined by the set °V". However, this set is different studying 
conformational, configurational or reaction PES. If  one is interested in confor- 
mational or configurational problems then one would like to obtain information 
about the entire PES(A). Usually only small domains of PES will be of interest 
studying chemical reaction. Accordingly, the method of gaining the set o V" will 
be different for each of the above problems. 
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In conformational analysis, the generation of the starting set is identical 
with the search for the most stable conformations of the molecule, i.e., 
search for the lowest energy conformations. Various methods have appeared 
in this field [18], for example grid search method combined with various 
heuristic and random approach [19], molecular dynamics as well as expert 
systems [20]. 

One of the possible ways how to generate the configurational starting set 0 V" 
has been introduced by Ugi et al. [21]. This general approach is based on the 
group-theory formalism. 

The formulation of the set 0 V" for chemical reaction study may be performed 
"by hand". It is, for instance, in such a case when we have reactants and 
products, and we are interested in reaction mechanism, activation barrier, 
stereochemistry of the reaction, etc. In the simplest cases, the set °V" has two 
elements. However, from the general (and heuristic) point of view, the above 
problem is combinatorial as it has been recently discussed in connection with the 
so-called FIEM(A) (Family of Isomeric Ensembles of Molecules) [2], and FIS(A) 
(Family of Isomeric Synthons) [8, 9]. However, the sets FIEM(A) and FIS(A) are 
usually very large, and only parts of them can be used as a starting set 0 V" for 
the elucidation of reaction PES. 

4.2. Interconversions between elements of  °V" - a  heuristic 
convertibility function F' 

One of the main reasons why to obtain PES is to get a dynamical picture about 
the investigated system, i.e., the illustration of interconversions between elements 
of the set °V". The interconversions have been modelled by the convertibility 
function F in the previous section. Now, we introduce a heuristic convertibility 
function F '  which is defined intuitively, but similarly as the exact convertibility 
function F. Accordingly, the function F '  can be understood as an estimation of 
F. It is defined for each v, v' from °V" as follows: 

f 
0 if both v and v' are expected to be in the 

catchment region of a critical point p of PES(A), 
F'(v, v') = 1 if v is expected to be convertible to v' (10) 

(in the sense of F), 
2 otherwise. 

Note that the function F'  is also defined for such a case when v and v' are in the 
same catchment region. It is a formally worthless situation for 0 V". There are 
two reasons for such a definition. The former is that the set o V" will be extended 
to 1V", e V", . . . .  during the path generating process which is described below 
and, as will be seen in the section describing the algorithm DAISY, the function 
F '  must also be applicable for these new sets 1V", 2 V", . . . .  of points on PES. 
The latter is that some points from the starting set °V" may subsequently be 
recognized as shallow minima which should be called rather unstable intermedi- 
ates or transition states than chemical species. In other words, some points 
looking like minima can later be identified in another category. The main aim 
why F '  is defined is the need for forming a starting set of conversions which will 
be used for generating PES paths. The function F'  is defined by Eq. (10) in a 
general manner. It is substituted by an actual convertibility function in real 
situations. 
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4.2.1. The stability of  the heuristic convertibility function F' 

In order to evaluate how the predicted conversions are real, we introduce the 
notion of stability of F' as follows. Let kH~,ES~A ) = (kV~, kE~, ~b, {Y, R}) be a 
subgraph of the extended graph of PES(A), kGpEs(A ). Let Cr and Cr, be the set 
of conversions produced by the function F and F' on the graph kH~,ES(A), 
respectively. We say that the function F'  is on the set k V~ of vertices: 

- -  strongly stable, if Cr = Cr, (1 l a) 

- -  stable, if Cr, c Cr ( l lb)  

- -  weakly stable, if Cr c Cr, ( l lc)  

- -  unstable, otherwise. ( 11 d) 

Finding a strongly stable convertibility function in some domain of PES(A) 
would mean that one can predict interconversions in the frame of this domain 
without any knowledge of PES(A). However, it is an ideal case. Note that 
stability of F'  is closely related to the classification of computer programs for 
synthesis design [9]. From this point of view, informational oriented approaches 
are based on a stable convertibility function (each proposal can usually be 
realized). In spite of that, logically oriented programs are based on a weakly 
stable convertibility function because they can usually find all the solutions of the 
problem (for example, combinatorially), but it is very difficult to interpret results 
because of their largeness. 

It should be pointed out that the notion of the stability of the heuristic 
convertibility function F'  is of a different meaning than that of the stability of 
minimum energy reaction paths [22]. The former expresses a quality of the 
heuristic convertibility function F' which can, however, predict very different 
conversions comparing to those derived from PES. The latter is an exact 
expression, and requires exact knowledge of the domain of PES which is being 
studied. 

4.3. Verification of heuristic predicted conversions 

The graph ~JPES(A) is a static expression of the investigated chemical system. It 
includes only minima along PES(A). The used general convertibility function F' 
expresses a heuristic prediction of a dynamical behavior of the system. The main 
task for F'  is to reduce the multi-dimensional problem of PES computation. 
However, the computation of F' has to be much faster than the application of 
some "expensive" and more exact method like the quantum chemical one. This 
"expensive" method is applied at the second level of the whole approach when 
the conversions predicted by F' are verified. The algorithm DAISY introduced 
below has been developed for this reason. 

4.3.1. The algorithm DAISY 

DAISY, an acronym for Distance Approach In potential energy (hyper)Surface 
paths Yield, is a heuristic algorithm for obtaining PES paths. The algorithm 
requires a starting set of nuclear configurations and a set of predicted intercon- 
versions between them. The algorithm is heuristic in such a sense that the paths 
found really exist, but they need not be optimal. The quality of results is 
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dependent mainly on the general driver used which will be discussed later. The 
algorithm introduced below is a modification of the recently developed version, 
which is a part of the program system DAISY [16]. 

Algorithm 3 - DAISY 
Describing the algorithm DAISY we will use the following denotation. Let A be 
the set of conversions predicted by F', i.e., A is the set of couples {(vi, vj)} such 
that the conversion vi--*vj has been predicted by F'. Let each couple (vi, vj) 
be ordered in such a way that E(vi) <. E(vj) (where E is the energy function), 
i.e., the conversions will be verified starting from the lower energy structure 
and leading to the higher energy structure. This rule can be changed using one 
option in the program system DAISY. Let B be the set of produced paths along 
PES, i.e. B is the set of couples {(v,v')} such that the path v ~ v '  has been 
generated by the algorithm DAISY. The function F'  is applied, if it is not 
explicitly said differently, within the actual set C,. The algorithm is described as 
follows. 

0. Initialization of variables and functions for the DRV functor, i.e., selection of 
functions F '  and O and setting up the step in the variable S, and the constant 
Emi n. Put B , =  ~ ,  s ,=  O, Cs== o V, F(vi, vj):= 0 for each (vi, vj) from Cs. 

1. If  A is empty go to step 16, else take the last couple from the set A. Let it be 
a couple (v~, vj), s .'=s + 1, C, .'= C,_ 1- Let t .'=F(v;, vj), i.e., t is the index of 
the set C, during which the edge v~ --. vj has been created. 

2. Put M : = 0 ,  v,=v~, v ' ,=vi.  
3. Put M , = M  + 1, v:=v' ,  H:=FALSE.  
4. Put v' ,= DRV(vi, v', vj, P, S, F',  O, U, C, w {v~ }), i.e., perform one step of 

driving from vi to vj starting in v'. 
5. If  M = 1 and P = 1 put A ..=A - (v~, vj), i.e., delete the predicted conversion 

from the set A of conversions to be verified, because this conversion is now 
being verified. 

6. If  O(v~, v') = 0 (v~ and v' are found to be very similar) go to step 3. 
7. If  F'(v',  vj) = 0 and O(v', vj) # 0 (i.e., v' is in the catchment region of vj but 

v' and vj are not identical) go to step 3. 
8. Let D be a set of nuclear configurations Vk from C, such that O(v', Vk) = 0. 

Put D ,=D -- {vi, v}. 
9. If  D ¢ ~ then do 9a, 9b and 9c for each Vk from D. Then go to step 1. 
9a. If  [E(v') - E(v~)][E(vk) - E(v')] < 0 then set Vk '= V'. 
9b. Set B. '=B u {(v~, vk)}. 
9c. If  F'(vk, vj) = 1 in the set Ct w {Vk } then put B .'= B w {(vk, vj) }, F(Vk, vj) ,= t. 

I f D = ~ g o  to step 11. 
The condition 9a means that looking for a minimum, we take the lower 
energy structure, and looking for a maximum, we take the higher energy 
structure. 

10. If  U = true, i.e., if DRV cannot drive v' between vi, Vj any more then put 
C ~ , = C ~ w { v } , B . . = B w { ( v ~ , v ) } ,  and go to step 1. 

11. If [ E ( v ' ) - E ( v ) ] [ E ( v ) - E ( v ~ ) ] < O  (the energy function E changes 
monotonousness in v, i.e., v is a local maximum or minimum) set 
C , = C u { v } w { v ' } ,  B : = B w { ( v ~ ,  v), (v, v')}, H.'= TRUE. 

12. If  v' still meets the path v i ~ v j  then if H = F A L S E  go to 3 else put 
A ..=A w {(v', vj)}, F(v', vj)..=s, and go to step 1. 

13. Let D be a set of nuclear configurations Vk such that v' is convertible onto vk, 
i.e., F'(v',  vk) = 1. Put D ..=D - {vi, v}. 
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14. If  D = JZ~ then save the point with the nuclear configuration v' into the set 
C of points describing PES, i.e. Cs .'= C~ w {v'}, B .'=B u {(vi, v')} and go back 
to step 1. 

15. Save all conversions from the point v' onto all points from the set D into the 
set A of remaining conversions to be verified. Formally, 
A,=A u{(v',  vk)},F(v', vk).'=s, for each vg from D. Go back to step 1. 

16. The end of the algorithm. 

Note that the above algorithm is logical but, at the same time, it includes 
some steps which make it possible to incorporate quantum chemical or other 
energy computation methods. However, it is not very surprising because energy 
computation itself needs such methods. 

One of the essential parts of the algorithm is a general driver here called 
DRV(vi, v', vj, P, S, F', O, U, C). The driver is a functor which performs a 
verification of the path v; ~ vj along PES. The algorithm generates the next point 
on the PES which should be on the path v~ ~ vj, and which follows the point v' 
with the step S. The driving is realized on the set C of various nuclear 
configurations. The logical variable U is set up in such a case when DRV cannot 
drive any more. The number of expected paths along PES in this case, i.e. 
number of paths between vi and vj, is returned by the variable P. This variable 
is of a special meaning if v,- = v', i.e. when the starting step of the verification of 
the path is being realized. Of course, the general driver DRV will be of various 
forms studying different types of PES. From the general point of view, every 
approach which is able to follow the verified path (for example, a valley path 
driver) may be used as a general driver. The approaches normally used in 
computational chemistry [23] can serve as examples. 

It is clear that DRV is dependent on the convertibility function F'. Except 
for this function, the function O, which measures an identity of nuclear configu- 
rations, is used. From the general point of view, the function O should express 
the principle of uncertainty. The function O~, used by current versions of the 
program system DAISY [16], can serve as an example of a heuristic estimation 
of O. In order to eliminate the conversions with a too low energy barrier, the 
parameter Emin is used by the algorithm. The parameter is not described here. It 
eliminates all the conversions with energy barrier less than Emin- 

However, only a primary description of PES, based on paths, is produced by 
the algorithm. This has to be subjected to further analysis for which some of the 
above algorithms can be used. The final set B can be understood as the set k V", 
and the final set C~ as the set hE" of colored and oriented edges. Therefore, the 

k ~ ,~ results of the algorithm may be seen as the heuristic graph "-'PES(m, an analogy 
0FT" of the graph vp~s(A) defined by Eq. (9). I f  we apply algorithm 2 to this graph, 

we get a heuristic estimation of the value k, critical points of indices 0, 1 . . . . .  k 
as well as the separation of "non-critical" points into catchment regions of 
critical points. By using the function F (Eq. (8)) one can get information about 
convertibility, conversion barriers as well as "transition states". At the same 
time, algorithm 1 can be applied, and K-barriers obtained. 

Note that DAISY reduces a generally exponential problem of computation 
of PES to the polynomial one. Let us consider that the starting set is composed 
of n vertices. Let us take the worst case when there is a conversion between each 

coupleofnverticestobeverified. Itimpliesthat(2)--(n2-n)/2ofconversions 

have to be verified. Each of them will be processed using a driver. Let us consider 
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that the upper bound of driver steps number is m. The computation of energy 
in each step is polynomial, i.e., it may be expressed, for example, as P(x), 
where P(x) is a polynomial and x is the number of electrons. The final time of 
computation can then be estimated as (m/2). (n 2 -  n). P(x), which is a poly- 
nomial. This is very important because the largeness of computed chemical 
systems which may be computed in polynomial time can be much more in- 
creased by the computer speed than if the computational time is expressed 
exponentially. 

The entire approach has been practically realized in several versions of the 
program system DAISY [16] which can be used for conformational PES paths 
obtaining with the assistance of molecular mechanics energy computation 
method (the program MMPMI [24] is used). At the same time, the conforma- 
tional softness [ 16] can be computed by DAISY. 

5. The generalized frame of the above model 

The model can be seen from and used at various levels. One could say that the 
final aim is to get the graph kG~,ES(A ) which contains most of the information we 
need. However, in real situations, this graph is substituted by the heuristic graph 
k/ '7-  "-'PES~A) obtained by the algorithm DAISY using various methods of energy 
computation and geometry optimization. Large chemically important informa- 

O ~  ~t tion can be obtained from the first level of this graph, vPES~A), and the heuristic 
convertibility function F'. This function is a heuristic basis of the model which 
concentrates chemical experience. Note that this function can be substituted, for 
example, by some program for computer assisted synthesis design. From the 
general point of view, F' includes two levels, the problem of completeness and 
the practical chemical applicability. The above mentioned mathematical models 
[2, 6-9] can serve as examples of elucidating the former level problems. The 
covering of the latter calls for a general heuristic theory of chemical reactivity 
including solvation and catalysis. The notions of similarity and complementarity 
may play an important role in this field. 

5.1. The similarity and complementarity of chemical systems 

Let us turn our attention to two notions, chemical reactivity and activity. The 
former is one of the central points of entire chemistry. The latter is very important 
in Computer Aided Molecular Design, CAMD. Both reactivity and activity can 
be seen from two standpoints. The first one is similarity of chemical systems which 
has been studied in the literature from both two- and three-dimensional point 
of view (of., for example, [25, 26]). It can be seen from many points of view, and 
used for reactivity predicting on the qualitative as well as quantitative level. The 
complementarity expresses an affinity of substrate and reagent or substrate and 
receptor, for example by "docking" [27] based on the theory of "lock and key". 
The similarity and complementarity seems to be a good formally methodological 
basis for the development of a heuristic theory of chemical reactivity and activity 
of chemical species. From the standpoint of the model, both similarity and 
complementarity can be understood as tools assisting the formulation of the 
function F' and, at the same time, they may serve as general tools for incorpo- 
rating the model into CAMD. 
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5.2. Quantum chemistry and the model 

The heuristic part of the model plays the role of PES predicting. Note that the 
predicted paths along PES have to be verified. Accordingly, the model is 
formulated in such a way that it can be used as a basis for the application of 
quantum chemical methods which can exactly elucidate small domains of PES. 
The model is formulated within classical mechanics. Quantum mechanics may be 
incorporated into the model using, for instance, quantum chemical methods 
energy computation. At the same time, the first, non-heuristic, part of the model 
is based on Mezey's theory of PES and, therefore, opened for the topological 
methods of PES study introduced by him, cf. for example [12]. These methods 
seem to be able to express the principle of uncertainty, and describe better the 
elucidated system from the quantum mechanical point of view. 

5.3. The model and computer-assisted synthesis design 

Computer-assisted synthesis design is one of the most attractive fields in theoret- 
ical chemistry. Two main trends have appeared in this area, information oriented 
programs, and those based on the logical structure [2]. Both above approaches 
are heuristic, and they do not use quantum chemistry. In theoretical chemistry, 
some approaches have appeared which are oriented completely non-empirically 
[28], and which have been called by Ugi et al. computer programs for synthesis 
design of third generation [29]. 

From the computer-assisted synthesis design point of view, the presented 
model can be used at two levels. The first one, the model may be used as a tool 
for the development of logically oriented computer programs on a heuristic basis 
using a heuristic convertibility function. From this point of view, the existing 
programs for computer-assisted synthesis design can be seen as a realized first 
level of this model. Very close to the philosophy of the model is the program 
MAPOS [30] which is based on the synthon model of organic chemistry 
[8, 9, 31]. 

The realization of the algorithm DAISY is the second level of the model. 
DAISY is a tool through which quantum chemistry may be incorporated. Mezey 
has proposed a general algorithm for non-empirical synthesis design [12] based 
on PES, and this level can serve, for example, as a tool for the definition of the 
starting set for that algorithm. Note that Mezey's algorithm may be relatively 
fast if the starting set is well defined, and, at the same time, very slow when the 
starting set proposal of critical points is not good. 

We believe that this model could be a part of a "mosaic" which will serve as 
a basis for computer-assisted synthesis design programs of a new generation. 

6. Conclusions 

The main aim of this paper is to propose a mathematical model which would be 
able to represent the logic of chemical changes on a general level. Therefore, the 
model is based on convertibility between chemical species, which is expressed by 
the convertibility function. The model itself is composed of two basic levels. The 
former is exact, introducing the general convertibility function which supposes 
exact knowledge of PES. The latter, heuristic, starts with heuristic predicted 
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conversions between chemical species, and generates and elucidates conversion 
paths along PES. From this point of view, the model is a "synthesis" of exact 
physical (PES) and heuristic approaches. Therefore, it can be used by theoretical 
as well as experimental chemistry. The heuristic elucidation of conversion paths 
along PES is one from the main results of the model. Since PES may be 
understood as a bridge between theoretical and experimental chemistry, the 
model could serve as a tool which may contribute to better and easier interpreta- 
tion of results of theoretical chemistry by experimental chemists. We believe that 
the model could also serve as a basis for chemically applicable program with this 
aim. 

Because of the included convertibility function and the general driver, the 
model is flexible. It produces the graph of predicted interconversions between 
chemical species. This graph itself may be used as a deductive model for 
convertibility prediction. However, it can be subjected to further analysis, and 
mainly a heuristic theory of chemical reactivity can be incorporated at this point. 
Such a theory could be incorporated in a "macroscopic" level as references 
about the change in a global way, or it can be concentrated into references about 
elementary interconversions, for example elementary electronic processes, using 
the theory of reaction mechanisms. 

The real using of the model, or computer program system based on it, can be 
split into four steps. 

(a) The formulation of a problem by chemist, i.e., the definition of the starting 
set °V". That can be, for example, conformational or configurational analysis, 
elucidation of reaction mechanism, the problem of synthesis of a chemical 
structure, etc. 

(b) Solution of the problem on the heuristic level without including any exact 
method, using a heuristic theory of chemical reactivity. Formulation of a 
problem for utilizing a more exact method. 

(c) Application of an exact method controlled by the heuristic mechanism, 
realization of the algorithm DAISY. 

(d) Recomputation of interesting points of PES by an exact method. 

It is easy to see that orientation of the model is determined by the formula- 
tion of the convertibility function F' and the general driver DRV. One can find 
several ideas for the formulation of a several-level heuristic convertibility func- 
tion in the literature. The metric space model by Dugundji, Ugi et al. [3a], their 
stereochemical model based on group-theory [21], Hendrickson's model [32], the 
model presented by Barone and Chanon [33], the synthon model of organic 
chemistry [8-10] etc. can serve as examples. At the same time, the model may be 
interfaced to Mezey's topological model [12] of PES as well as to his theory of 
reaction topology [34]. However, a well usable chemical program has to include 
as a very important part some "interface to neighborhood", i.e., to a chemist. 
Such a program should be "user friendly". It means that it should "understand", 
for example, chemical nomenclature. Some parts of such an interface has been 
described, for instance, by Gordon [35]. 

The described model has been partially realized as the program system 
DAISY [16] for studying of the conformational behavior of open chain 
molecules. The convertibility function and actually used driver is described in ref. 
[36]. 
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